Chapter1. The Devices: Diode and MOS Transistors (Chapter 3 in textbook)

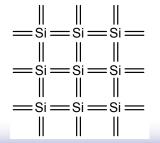
[Adapted from Rabaey's Digital Integrated Circuits, ©2002, J. Rabaey et al.]

© Digital Integrated Circuits^{2nd}

Devices

Devices

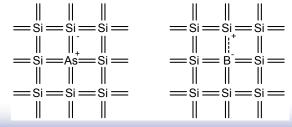
Goal of this chapter


- Present intuitive understanding of device operation
- Introduction of basic device equations
- Introduction of models for manual analysis
- Introduction of models for SPICE simulation
- Analysis of secondary and deep-submicron effects
- □ Future trends

Devices

Semiconductors

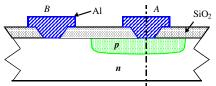
© Digital Integrated Circuits^{2nd}


- Semiconductor: electrical conductivity greater than insulator, but less than conductor.
- Derived Semiconductor materials: Si, Ge, GaAs, etc.
- □ Transistors are built on a silicon (Si) substrate
- □ Silicon is a Group IV semiconductor material
- □ Forms crystal lattice with bonds to four neighbors

Silicon Material

© Digital Integrated Circuits^{2nd}

- Pure silicon: very few free carriers, conducts poorly
- □ Intrinsic Si (undoped):
 - $n=p=n_i=1.5\times 10^{10}/\text{cm}^3$ (room temperature) where *n* (p): free-electron(hole) concentration, n_i : intrinsic carrier concentration.
- Adding dopants increases the conductivity
 - ✓ Group V dopants: contribute extra electron (n-type)
 - ✓ Group III dopants: contribute hole (missing electron, p-type)


© Digital Integrated Circuits^{2nd}

Dopants

- Donor: impurity with valence ≥5 (e.g. P, As) => n-type with free electrons. Assume doping concentration of donor as N_D.
 Assume the provide the provided of the pr
 - 1). Concentration of free electrons in n-type material (n_n): $n_n = N_D >> n_i$
 - 2). Concentration of free holes in n-type material (p_n) $p_n = n_i^2 / N_D$
- □ Acceptor: impurity with valence \leq 3 (e.g. B) => p-type with free holes. Assume doping concentration of acceptor as N_A.
 - 1). Concentration of free holes in p-type material (p_p): $p_p=N_A>>n_i$
 - 2). Concentration of free electrons in p-type material (n_p) $n_p = n_i^2/N_A$

© Digital Integrated Circuits^{2nd} Devices © Digital Integrated Circuits^{2nd} Bulk

The Diode

Cross-section of *pn*-junction in an IC process

Mostly occurring as parasitic element in Digital ICs

Devices

Depletion Region

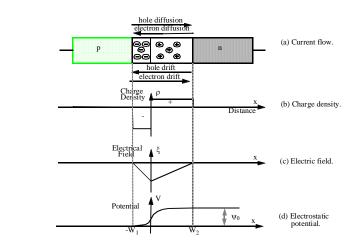
p-n Junctions

diode.

SiO

direction

□ A junction between p-type and


Current flows only in one

Anode

 p^+

n

n-type semiconductor forms a

© Digital Integrated Circuits^{2nd}

n-type

cathode

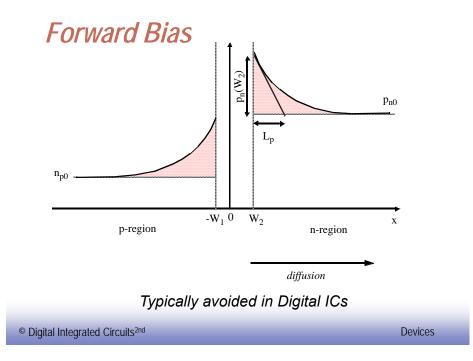
Anode

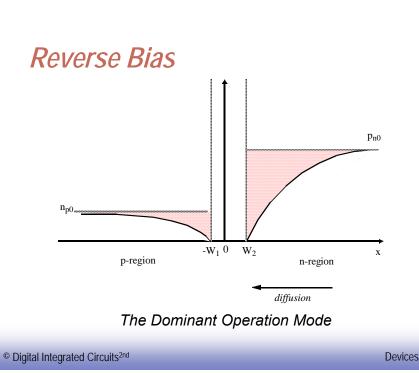
Ż

Cathode

p-type

anode


Cathode


PN Junction

© Digital Integrated Circuits^{2nd}

□ Built-in potential of PN junction: $\Phi_0 = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$ where the thermal voltage V_T: V_T=kT/q, in it, k: Boltzmann constant, k=1.38×10⁻²³ m²·kg·s⁻²·K⁻¹, q: electron charge, q=1.6×10⁻¹⁹C. At room temperature (T=300K), V_T=0.026V.

Reversed-biased Diode: Depletion Width Depletion Width depletion regi use Poisson's equation & charge neutrality ptype _n-type - W = $x_p + x_n$ NA $2\varepsilon(\Psi_0+V_R)N_D$ $2\varepsilon(\Psi_0 + V_R)N_A$ $qN_A(N_D + N_A)$ $qN_D(N_D + N_A)$ • where V_R is applied reverse bias ε is the permittivity of Si $W = \left[\frac{2\varepsilon(\Psi_0 + V_R)}{q}\frac{N_D + N_A}{N_D N_A}\right]$ ε = 1.04x10⁻¹² F/cm $\epsilon = K_{S}\epsilon_{0}$, where $\epsilon_{0} = 8.85 \times 10^{-14}$ F/cm and $K_s = 11.8$ is the relative permittivity of silicon One-sided Step Junction $2\varepsilon(\Psi_0 + V_R)$ - if NA>>N (p+n diode) $W \cong x_n =$ most of junction on n-side $\int 2\varepsilon (\Psi_0 + V_R)$ - if $N_{\rm D} >> N_{\rm A}$ (n+p diode) • most of junction on p-side $W \cong x_p =$ © Digital Integrated Circuits^{2nd} Devices

Forward-biased Junction

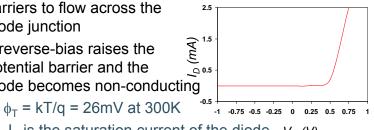
 $\frac{1}{r_{d}} = \frac{dI_{D}}{dV_{D}} = I_{S} \frac{e^{V_{D}/V_{T}}}{V_{T}} = \frac{I_{D}}{V_{T}}$

- Drift current: current flow due to concentration gradient of the minority charge near junction
- □ Forward-bias current under forward-bias voltage V_D:

$$\boxed{I_D = I_S \left(e^{V_D/V_T} - 1 \right)} \quad I_S \propto A \left(\frac{1}{N_D} + \frac{1}{N_D} \right)$$

Small-signal model of forward-biased diode 1). Incremental resistance r_d

- 2). Depletion capacitance C_i: for depletion width change and immobile charge change in depletion region.
- 3). Diffusion capacitance C_d : for minority carrier $C_d = \frac{\tau_T}{r_d}$ concentration change close to junction. ^ττ: transition time of diode (specified for a given technology)

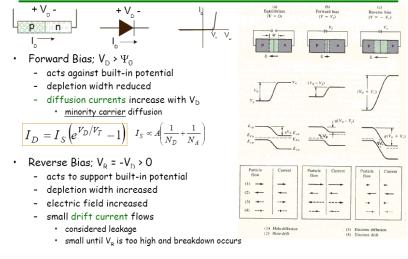

© Digital Integrated Circuits^{2nd}

Reverse Bias Diode

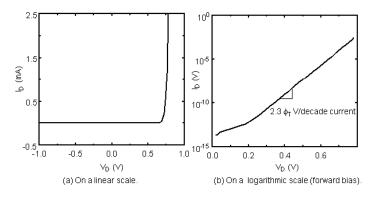
□ The *ideal diode equation* (for both forward and reversebias conditions) is: $I_{D} = I_{s}(e^{V_{D}/\phi_{T}} - 1)$

where V_{D} is the voltage applied to the junction -

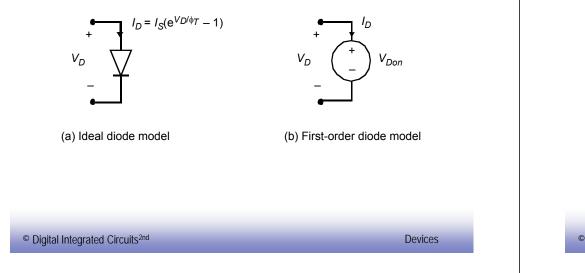
- a forward-bias lowers the potential barrier allowing carriers to flow across the diode junction
- a reverse-bias raises the potential barrier and the diode becomes non-conducting

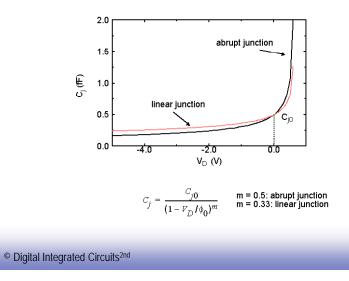


Devices


 $I_{\rm S}$ is the saturation current of the diode $V_{\rm D}(V)$

```
© Digital Integrated Circuits<sup>2nd</sup>
```



Diode Current


 $I_D = I_S \left(e^{V_D / \phi_T} - 1 \right)$

© Digital Integrated Circuits^{2nd}

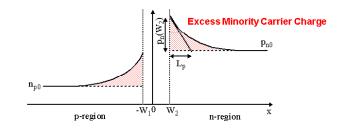
Models for Manual Analysis

Junction Capacitance

Junction Depletion Capacitance

- Depletion capacitance: capacitance due to varying charge storage in depletion regions.
- Reason: bias voltage changes =>junction widths change =>charge in depletion region changes => capacitance effect.
- Depletion capacitance:

$$\mathbf{C}_{j} = \frac{d\mathbf{Q}^{*}}{d\mathbf{V}_{\mathsf{R}}} = \left[\frac{q\mathbf{K}_{s}\varepsilon_{0}}{2(\Phi_{0} + \mathbf{V}_{\mathsf{R}})}\frac{\mathbf{N}_{\mathsf{A}}\mathbf{N}_{\mathsf{D}}}{\mathbf{N}_{\mathsf{A}} + \mathbf{N}_{\mathsf{D}}}\right]^{1/2} = \frac{\mathbf{C}_{j0}}{\sqrt{1 + \frac{\mathbf{V}_{\mathsf{R}}}{\Phi_{0}}}} \quad \mathbf{C}_{j0} = \sqrt{\frac{q\mathbf{K}_{s}\varepsilon_{0}}{2\Phi_{0}}}\frac{\mathbf{N}_{\mathsf{A}}\mathbf{N}_{\mathsf{D}}}{\mathbf{N}_{\mathsf{A}} + \mathbf{N}_{\mathsf{D}}}}$$

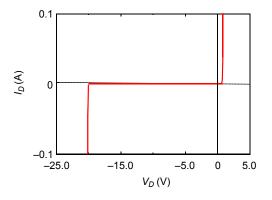

 C_{j0} : depletion capacitance per unit area at V_R =0. If N_A >> N_D (one-side diode):

$$\mathbf{C}_{j} = \left[\frac{\mathbf{q}\mathbf{K}_{s}\varepsilon_{0}\mathbf{N}_{D}}{2(\Phi_{0} + \mathbf{V}_{R})}\right]^{1/2} = \frac{\mathbf{C}_{j0}}{\sqrt{1 + \frac{\mathbf{V}_{R}}{\Phi_{0}}}} \quad \text{where} \quad \mathbf{C}_{j0} = \sqrt{\frac{\mathbf{q}\mathbf{K}_{s}\varepsilon_{0}\mathbf{N}_{D}}{2\Phi_{0}}}$$

© Digital Integrated Circuits^{2nd}

Devices

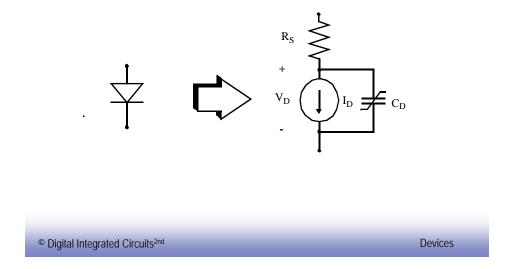
Diffusion Capacitance



$$C_{d} = \frac{\mathrm{d}Q_{D}}{\mathrm{d}V_{D}} = \tau_{T} \frac{\mathrm{d}I_{D}}{\mathrm{d}V_{D}} \approx \frac{\tau_{T}I_{D}}{\phi_{T}}$$

© Digital Integrated Circuits^{2nd}

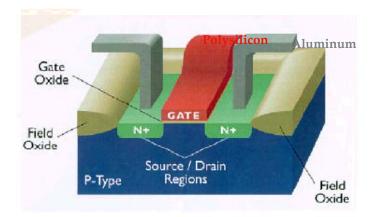
Secondary Effects


.

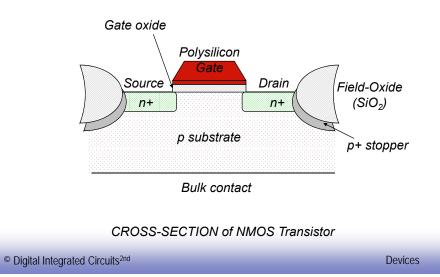
Avalanche Breakdown

|--|

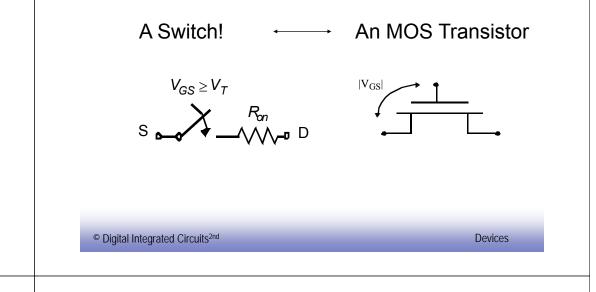
Diode Model



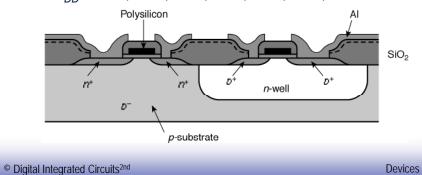
SPICE Parameters

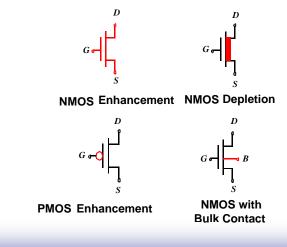

Parameter Name	Symbol	SPICE Name	Units	Default Value
Saturation current	I_S	IS	А	1.0 E-14
Emission coefficient	п	N	-	1
Series resistance	R_S	RS	Ω	0
Transit time	τ_T	TT	sec	0
Zero-bias junction capacitance	C_{j0}	C10	F	0
Grading coefficient	т	М	-	0.5
Junction potential	\$ 0	VJ	v	1

First Order SPICE diode model parameters.


Device: The MOS Transistor

Device: The MOS Transistor

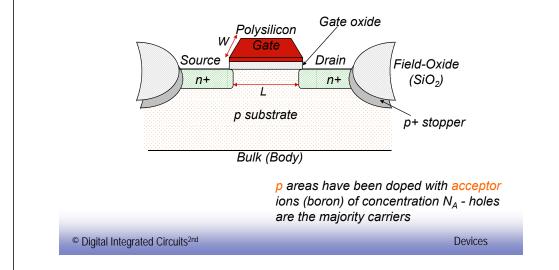

What is a Transistor?


Power Supply Voltage for CMOS

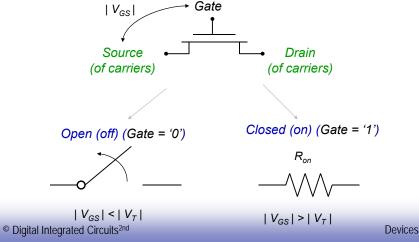
- GND = 0 V
- In 1980's, V_{DD} = 5V
- V_{DD} has decreased in modern processes

 High V_{DD} would damage modern tiny transistors
 Lower V_{DD} saves power
- V_{DD} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 1.0V, ...

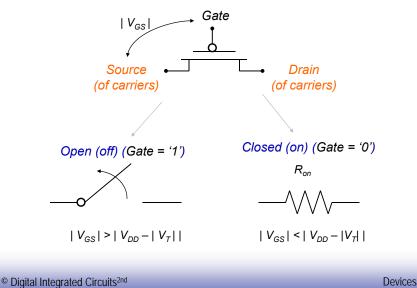
MOS Transistors -Types and Symbols

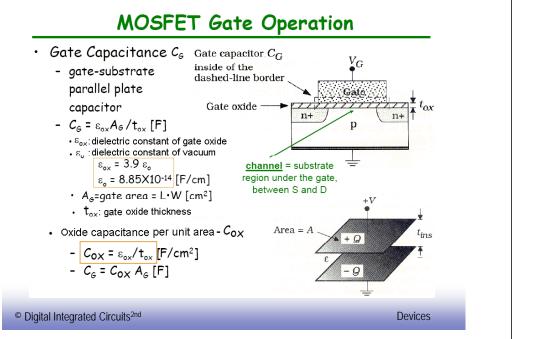


© Digital Integrated Circuits^{2nd}

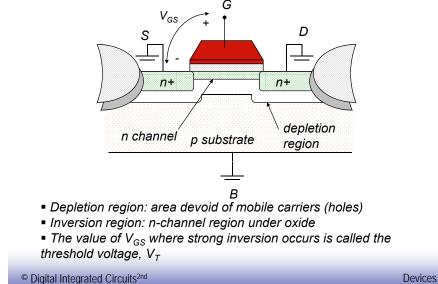

The NMOS Transistor Cross Section

n areas have been doped with donor ions (arsenic) of concentration N_D - electrons are the majority carriers



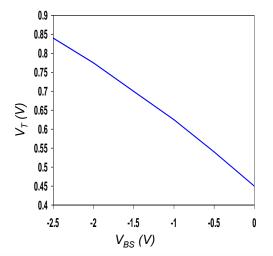

Switch Model of NMOS Transistor

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain



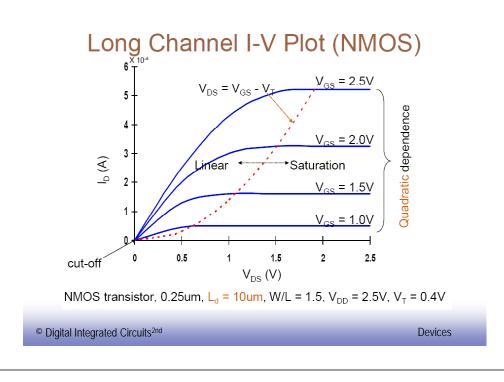
Switch Model of PMOS Transistor

Threshold Voltage Concept

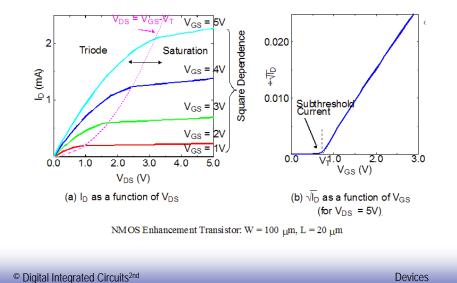

The Threshold Voltage

where

 $V_{T} = V_{T0} + \gamma(\sqrt{|-2\phi_{F} + V_{SB}|} - \sqrt{|-2\phi_{F}|})$


- V_{T0} is the threshold voltage at V_{SB} = 0 and is mostly a function of the manufacturing process
 - Difference in work-function between gate and substrate material, oxide thickness, Fermi voltage, charge of impurities trapped at the surface, dosage of implanted ions, etc.
- V_{SB} is the source-bulk voltage
- $\phi_F = -\phi_T ln(N_A/n_i)$ is the Fermi potential ($\phi_T = kT/q = 26mV$ at 300K is the thermal voltage; N_A is the acceptor ion concentration; $n_i \approx 1.5 \times 10^{10}$ cm⁻³ at 300K is the intrinsic carrier concentration in pure silicon)
- $\gamma = \sqrt{(2q_{\mathcal{E}_{si}}N_A)/C_{ox}}$ is the body-effect coefficient (impact of changes in V_{SB}) (ε_{si} =1.053x10⁻¹⁰F/m is the permittivity of silicon; $C_{ox} = \varepsilon_{ox}/t_{ox}$ is the gate oxide capacitance with ε_{ox} =3.5x10⁻¹¹F/m)

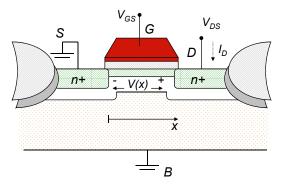
The Body Effect



• V_{SB} is the substrate bias voltage (normally positive for n-channel devices with the body tied to ground)

• A negative bias causes V_T to increase from 0.45V to 0.85V

Long Channel I-V Relation (NMOS)



MOSFET Operating Regions

- Strong inversion when $V_{GS} > V_T$
 - Linear (resistive) when $\rm V_{\rm DS}$ < $\rm V_{\rm DS-sat}$
 - Saturated (constant current) when $V_{DS} \ge V_{DS-sat}$
- Weak inversion (sub-threshold) when $V_{GS} \leq V_{T}$
 - Exponential in V_{GS} with linear V_{DS} dependence
- V_{DS-sat} : Drain-source voltage when the channel becomes pinched off. $V_{DS-sat} = V_{GS} V_T$
- Transconductance
 - process transconductance, $k'_n = \mu_n Cox$ (for NMOS), $k'_p = \mu_p Cox$ (for PMOS). • constant for a given fabrication process
 - device transconductance, $\beta_n = k'_n W/L$ (for NMOS), $\beta_p = k'_p W/L$ (for PMOS).

Devices

Transistor in Linear Mode Assuming $V_{GS} > V_T$

□ When V_{GS} > V_{T} , and V_{DS} < V_{GS} - V_{T} , a current flows from drain to source □ The current is a linear function of both V_{GS} and V_{DS}

Voltage-Current Relation: Linear Mode

For long-channel devices (L > 0.25 micron)

 $\Box \text{ When } V_{\text{DS}} \leq V_{\text{GS}} - V_{\text{T}}$

 $I_{\rm D} = k'_{\rm n} W/L [(V_{\rm GS} - V_{\rm T})V_{\rm DS} - V_{\rm DS}^2/2]$

where

 $k'_n = \mu_n C_{ox} = \mu_n \varepsilon_{ox} / t_{ox}$ = is the process transconductance parameter (μ_n is the carrier mobility (m²/Vsec))

 $k_n = k'_n$ W/L is the gain factor of the device

For small V_{DS} , there is a linear dependence between V_{DS} and I_D , hence the name resistive or linear region

© Digital Integrated Circuits^{2nd}

Devices

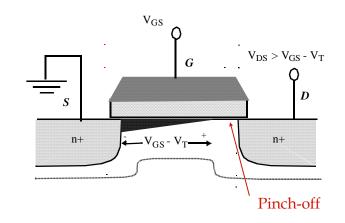
Transistor in Saturation Mode Vos Vos Image: Second Sec

- Increasing V_{DS} beyond V_{GS}-V_T causes the depletion region at drain to grow \rightarrow effective channel length L decreases
- Since ID is inversely proportional to L, as L decreases, ID increases, but compared to linear mode, it is relatively constant

© Digital Integrated Circuits^{2nd}

Voltage-Current Relation: Saturation Mode For long channel devices

 $\Box \text{ When } V_{\text{DS}} \geq V_{\text{GS}} - V_{\text{T}}$


 $I_{\rm D}' = k'_{\rm n}/2 \text{ W/L} [(V_{\rm GS} - V_{\rm T})^2]$

- since the voltage difference over the induced channel (from the pinch-off point to the source) remains fixed at $V_{GS} V_T$
- However, the effective length of the conductive channel is modulated by the applied V_{DS}, so

$$I_{\rm D} = I_{\rm D}' (1 + \lambda V_{\rm DS})$$

where λ is the channel-length modulation (varies with the inverse of the channel length)

Transistor in Saturation

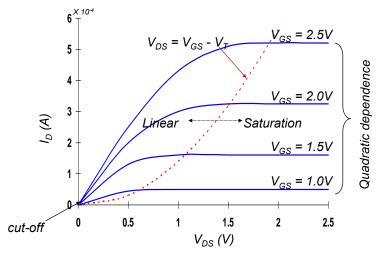
Current-Voltage Relations

$$\begin{aligned}
 G & \longrightarrow D \\
 I_{S} & V_{T} = V_{T0} + \gamma(\sqrt{|-2\phi_{F} + V_{SB}|} - \sqrt{|-2\phi_{F}|}) \\
 V_{DS-sat} = V_{GS} - V_{T} = V_{eff}
 \end{aligned}$$
1). Linear (Triode) Region: $V_{GS} > V_{T}, V_{DS} \leq V_{GS} - V_{T}$

$$I_{D} = k_{n} \frac{W}{L} [(V_{GS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2}] \\
 with \quad k_{n}' = \mu_{n}C_{ox} = \frac{\mu_{n}\delta_{ox}}{t_{ox}} \Rightarrow \text{Process Transconductance} \\
 Parameter
 \end{aligned}$$
2). Saturation (Active) Region: $V_{GS} > V_{T}, V_{DS} \geq V_{GS} - V_{T}$

$$I_{D} = \frac{k_{n}W}{2L} (V_{GS} - V_{T})^{2} [1 + \lambda(V_{DS})] \\
 Shub-threshold (Cutoff) Region: $V_{GS} \leq V_{T} \\
 I_{D} = 0 \\
 al Integrated Circuits^{2nd}$$$

Current Determinates


For a fixed V_{DS} and V_{GS} (> V_T), I_{DS} is a function of

- the distance between the source and drain L
- the channel width W
- the threshold voltage V_T
- the thickness of the SiO₂ t_{ox}
- the dielectric of the gate insulator $(SiO_2) \epsilon_{ox}$
- the carrier mobility

© Digital Integrated Circuits^{2nd}

- for nfets: $\mu_n = 500 \text{ cm}^2/\text{V-sec}$
- for pfets: μ_p = 180 cm²/V-sec

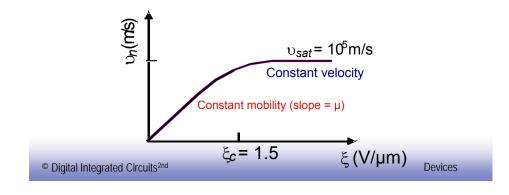
Long Channel I-V Plot (NMOS)

NMOS transistor, 0.25 μ , L_d = 10 μ , W/L = 1.5, V_{DD} = 2.5V, V_T = 0.4V

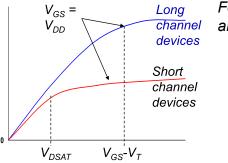
Second Order Effects Channel Length Modulation Square Law Equation predicts I_D is constant with V_{DS} However, I_D actually increases slightly with V_{DS}

- + due to effective channel getting shorter as $V_{\mbox{\scriptsize DS}}$ increases
- effect called channel length modulation
- Channel Length Modulation factor, $\boldsymbol{\lambda}$
 - + models change in channel length with $V_{\mbox{\tiny DS}}$
- Corrected \mathbf{I}_{D} equation

$$I_D = \frac{\mu_n C_{OX}}{2} \frac{W}{L} (V_{GS} - V_t)^2 \left(1 + \lambda (V_{DS} - V_{eff})\right)$$


- so far we have assumed that substrate and source are grounded
- if source not at ground, source-to-bulk voltage exists, V_{SB} > 0
- V_{SB} > 0 will increase the threshold voltage, Vtn = $f(V_{SB})$
- called Body Effect, or Body-Bias Effect

© Diai


Velocity Saturation

 For long channel device: carrier velocity increases linearly with E-field: ν_n=-μ_nξ(x)=μ_n(dV/dx)

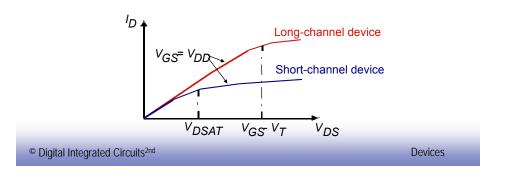
• For transistors with very short channel length (short-channel devices), when E-field along the channel reaches a critical value ξ_c , the velocity of carriers saturates due to scattering effects (collisions suffered by carriers).

Velocity Saturation Effects

For short channel devices and large enough $V_{\rm GS}-V_{\rm T}$

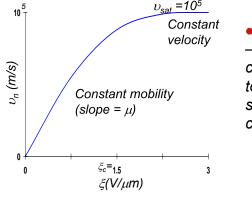
• $V_{DSAT} < V_{GS} - V_T so$ the device enters saturation before V_{DS} reaches $V_{GS} - V_T$ and operates more often in saturation

• *I*_{DSAT} has a linear dependence wrt V_{GS} so a reduced amount of current is delivered for a given control voltage


Devices

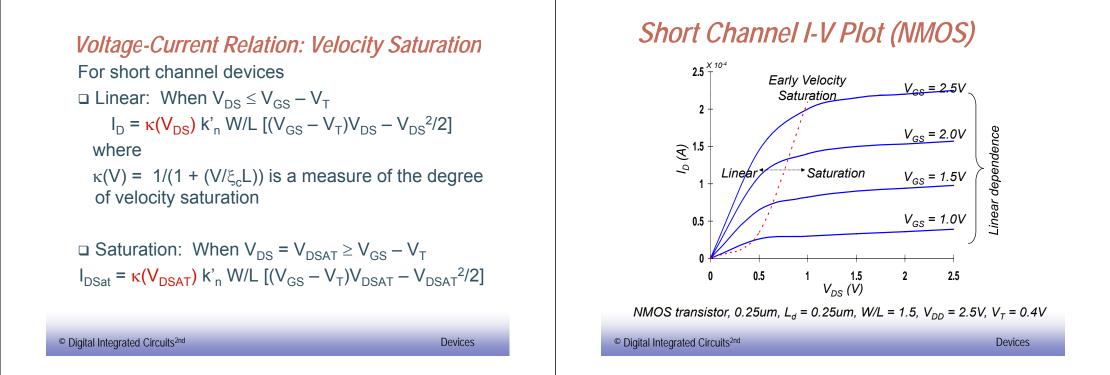
Perspective

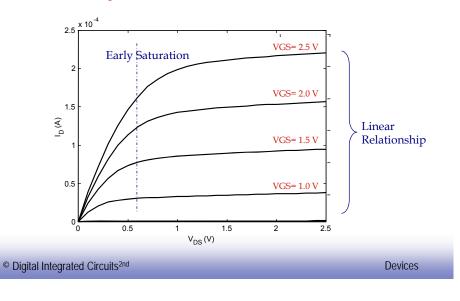
• For short channel transistor, due to velocity saturation:


✓ Transistor enters saturation before V_{DS} reaches V_{GS} - V_T . Short-channel devices experience extended saturation region, and tend to operation more often in saturation conditions.

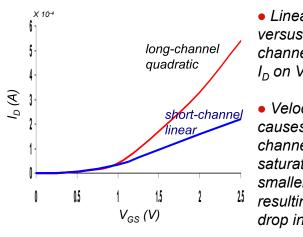
✓ Saturation current I_{DSAT} shows linear dependence to V_{GS} instead of squared dependence in long-channel device. This reduces the amount of current a transistor can deliver for a given control voltage.

Short Channel Effects


• Behavior of short channel device mainly due to

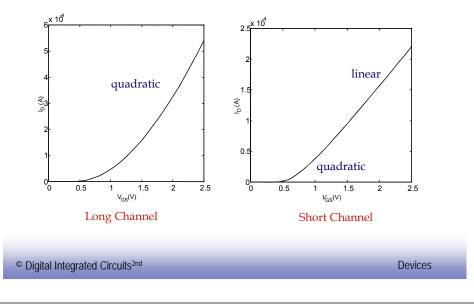

• Velocity saturation – the velocity of the carriers saturates due to scattering (collisions suffered by the carriers)

• For an NMOS device with L of .25µm, only a couple of volts difference between D and S are needed to reach velocity saturation

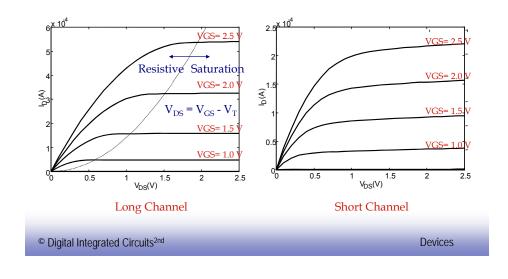

© Digital Integrated Circuits^{2nd}

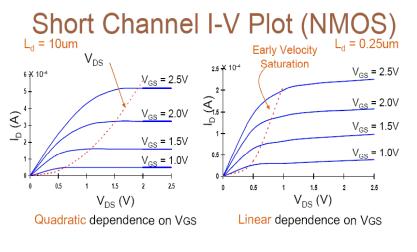
Current-Voltage Relations The Deep-Submicron Era

MOS I_D-V_{GS} Characteristics


• Linear (short-channel) versus quadratic (longchannel) dependence of I_D on V_{GS} in saturation

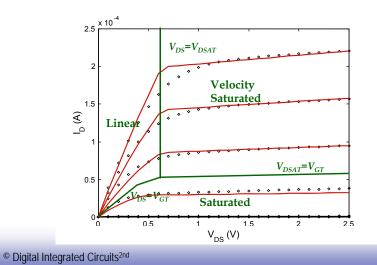
• Velocity-saturation causes the shortchannel device to saturate at substantially smaller values of V_{DS} resulting in a substantial drop in current drive


(for V_{DS} = 2.5V, W/L = 1.5)


© Digital Integrated Circuits^{2nd}

I_D versus V_{GS}

I_D versus V_{DS}



• I_{DSAT} has a linear dependence with respect to V_{GS} (as opposed to quadratic) so a reduced amount of current is delivered for a given control voltage

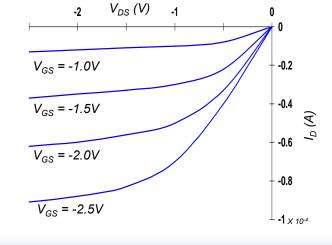
© Digital Integrated Circuits^{2nd}

Devices

Simple Model versus SPICE

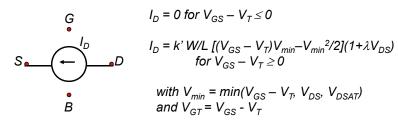
pMOS Equations

- - · change all n-tpye regions to p-type
 - · change all p-type regions to n-type
 - substrate is n-type (nWell)
 - · channel charge is positive (holes) and (+)ve charged ions
- equations


© Digital Integrated Circuits^{2nd}

- change V_{65} to V_{56} (V_{56} typically = VDD V_6)
- change V_{DS} to V_{SD} (V_{SD} typically = VDD V_{D})
- change Vtn to |Vtp|
 - pMOS threshold is negative, nearly same magnitude as nMOS
- other factors
 - lower surface mobility, typical value, μ_{p} = 220 cm²/V-sec
- body effect, change V_{SB} to V_{BS}

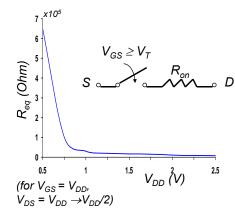
Devices


Short Channel I-V Plot (PMOS)

All polarities of all voltages and currents are reversed

PMOS transistor, 0.25 μ , L_d = 0.25 μ , W/L = 1.5, V_{DD} = 2.5V, V_T = -0.4V © Digital Integrated Circuits^{2nd} Devices

The MOS Current-Source Model


 Determined by the voltages at the four terminals and a set of five device parameters

	V _{T0} (V)	γ(V ^{0.5})	$V_{DSAT}(V)$	k'(A/V²)	λ(V-1)
NMOS	0.43	0.4	0.63	115 x 10⁻ ⁶	0.06
PMOS	-0.4	-0.4	-1	-30 x 10⁻ ⁶	-0.1

© Digital Integrated Circuits^{2nd}

Devices

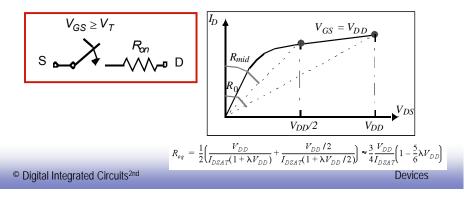
The Transistor Modeled as a Switch

Modeled as a switch with infinite off resistance and a finite on resistance, Ron

- Resistance inversely proportional to W/L (doubling W halves R_{on})
- For $V_{DD} >> V_T + V_{DSAT}/2$, R_{on} independent of V_{DD}
- Once V_{DD} approaches V_{T} , *R*_{on} increases dramatically

V _{DD} (V)	1	1.5	2	2.5	
NMOS(kΩ)	35	19	15	13	For
PMOS (kΩ)	115	55	38	31	divi

(for W/L = 1) larger devices ide R_{ea} by W/L

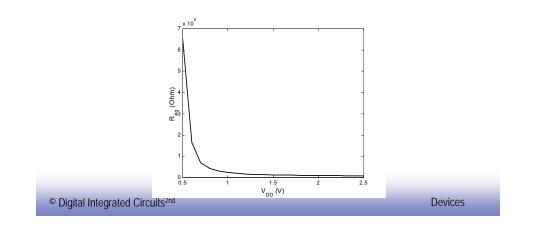

© Digital Integrated Circuits^{2nd}

The Transistor as a Switch

• In digital VLSI, transistor is treated as a switch with infinite "off" resistance, and a finite "on" resistance *R*_{on}.

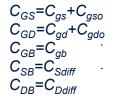
• *R*_{on} is time varying, nonlinear and dependent on transistor operating point. We can use the average value of resistances at the end points of the transition.

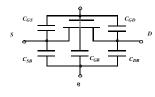
• R_{eq} is inversely proportional to (W/L) ratio of transistor. Doubling the transistor width cuts the resistance in half. (IDSAT is linear to (W/L))


MOS Capacitances Dynamic Behavior

The Transistor as a Switch

• For V_{DD} >> V_T + V_{DSAT} /2, R_{eq} is virtually independent of V_{DD} . On a minor increase on R_{eq} due to channel length modulation can be observed when raising V_{DD} .

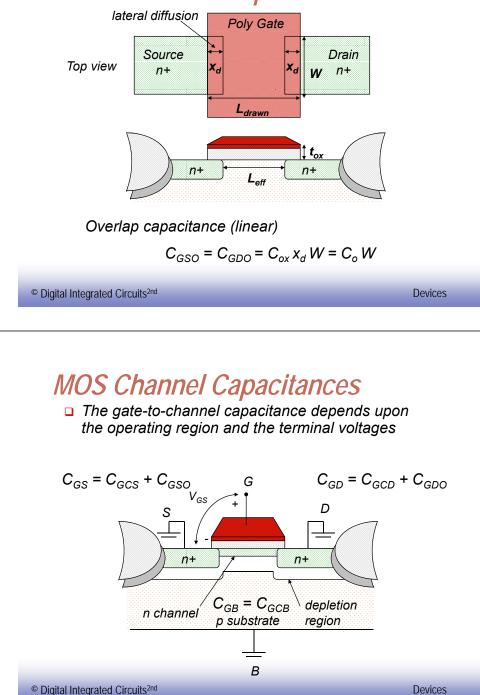

• Once $V_{DD} \rightarrow V_T$, R_{eq} increases dramatically.



Capacitances of MOS Transistor

• MOS capacitances according to physical mechanisms Overlap capacitances: C_{gso} , C_{gdo} Channel capacitances: C_{gs} , C_{gd} , C_{gb} Diffusion capacitance: C_{Sdiff} , C_{Ddiff}

• Lumped capacitance model of MOS transistor: capacitances between terminals without considering physical mechanisms


MOS Intrinsic Capacitances

- □ Structure capacitances
- □ Channel capacitances

© Digital Integrated Circuits^{2nd}

Depletion regions of the reversebiased *pn*-junctions of the drain and source

MOS Structure Capacitances

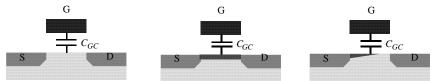
MOS Capacitances: Structure Capacitances

MOS structure capacitance: Polysilicon gate originate from MOS structure 1). Gate capacitance C_a $C_{\alpha} = C_{\alpha x} W \cdot L$, where $C_{\alpha x} = \mathcal{E}_{\alpha x} / t_{\alpha x}$ Drain Source Lateral diffusion: during to n* fabrication. both source and drain tends to extend somewhat below Gate bulk overla the oxide by x_{d} . (a) Top view Effective channel length: $L_{eff} = L - 2x_d$ Gate oxide Gate capacitance considering x_d: tox n* n* $C_{a} = C_{ox} W \cdot L_{eff}$ 2). Overlap capacitance: C_{qso}, C_{ado} (b) Cross-section $C_{aso} = C_{ado} = C_{ox} \cdot x_d \cdot W$ © Digital Integrated Circuits^{2nd}

Devices

Review: Summary of MOS Operating Regions

- \Box Cutoff (really subthreshold) $V_{GS} \leq V_T$
 - Exponential in V_{GS} with linear V_{DS} dependence
 - $I_{D} = I_{S} \; e^{\;(qV_{GS}/nkT)} \; (1 e^{\;-(qV_{DS}/kT)}) \; (1 \lambda \; V_{DS}) \quad \text{where} \quad n \geq 1$
- □ Strong Inversion $V_{GS} > V_T$
 - Linear (Resistive) $V_{DS} < V_{DSAT} = V_{GS} V_T$ $I_{D} = k' W/L [(V_{GS} - V_{T})V_{DS} - V_{DS}^{2}/2] (1 + \lambda V_{DS}) \kappa (V_{DS})$
 - Saturated (Constant Current) $V_{DS} \ge V_{DSAT} = V_{GS} V_T$ $I_{DSat} = k' W/L [(V_{GS} - V_T)V_{DSAT} - V_{DSAT}^2/2] (1 + \lambda V_{DS}) \kappa (V_{DSAT})$


		V _{T0} (V)	γ(V ^{0.5})	V _{DSAT} (V)	k'(A/V ²)	λ(V ⁻¹)
Ī	NMOS	0.43	0.4	0.63	115 x 10 ⁻⁶	0.06
I	PMOS	-0.4	-0.4	-1	-30 x 10 ⁻⁶	-0.1

© Digital Integrated Circuits^{2nd}

Devices

Channel Capacitance

- MOS channel capacitances: originate from channel charge
- MOS gate-to-channel capacitances: Cab, Cas, Cad
- Distribution of gate capacitance among channel capacitances depends on operating conditions.

Cut-off

Saturation

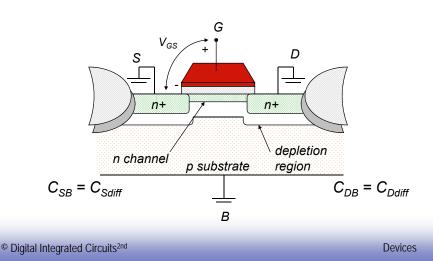
Resistive MOS gate-to-channel capacitances in different operation regions

Operation Region	C_{gb}	Cgs	Cgd
Cutoff	C _{ox} WL _{eff}	0	0
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0

© Digital Integrated Circuits^{2nd}

Devices

Average Distribution of Channel Capacitance


Operation Region	C _{GCB}	C _{GCS}	C _{GCD}	C _{GC}	C _G
Cutoff	C _{ox} WL	0	0	C _{ox} WL	C _{ox} WL + 2C _o W
Resistive	0	C _{ox} WL/2	C _{ox} WL/2	C _{ox} WL	C _{ox} WL + 2C _o W
Saturation	0	(2/3)C _{ox} WL	0	(2/3)C _{ox} WL	(2/3)C _{ox} WL + 2C _o W

- Channel capacitance components are nonlinear and vary with operating voltage
- Most important regions are cutoff and saturation since that is where the device spends most of its time

© Digital Integrated Circuits^{2nd}

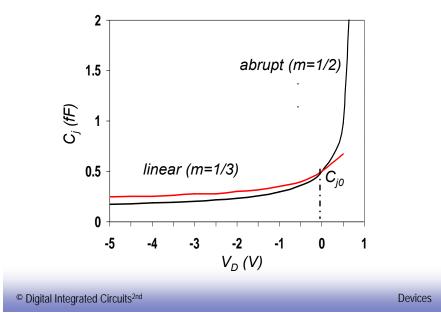
MOS Diffusion Capacitances

□ The junction (or diffusion) capacitance is from the reverse-biased source-body and drain-body pn-junctions.

Review: Reverse Bias Diode

□ All diodes in MOS digital circuits are reverse biased; the dynamic response of the diode is determined by depletion-region charge or junction capacitance

 $C_i = C_{i0} / ((1 - V_D) / \phi_0)^m$

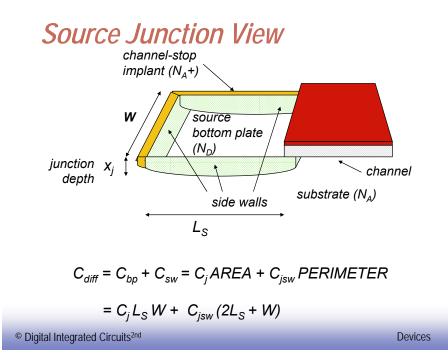

where C_{i0} is the capacitance under zero-bias conditions (a function of physical parameters), ϕ_0 is the built-in potential (a function of physical parameters and temperature)

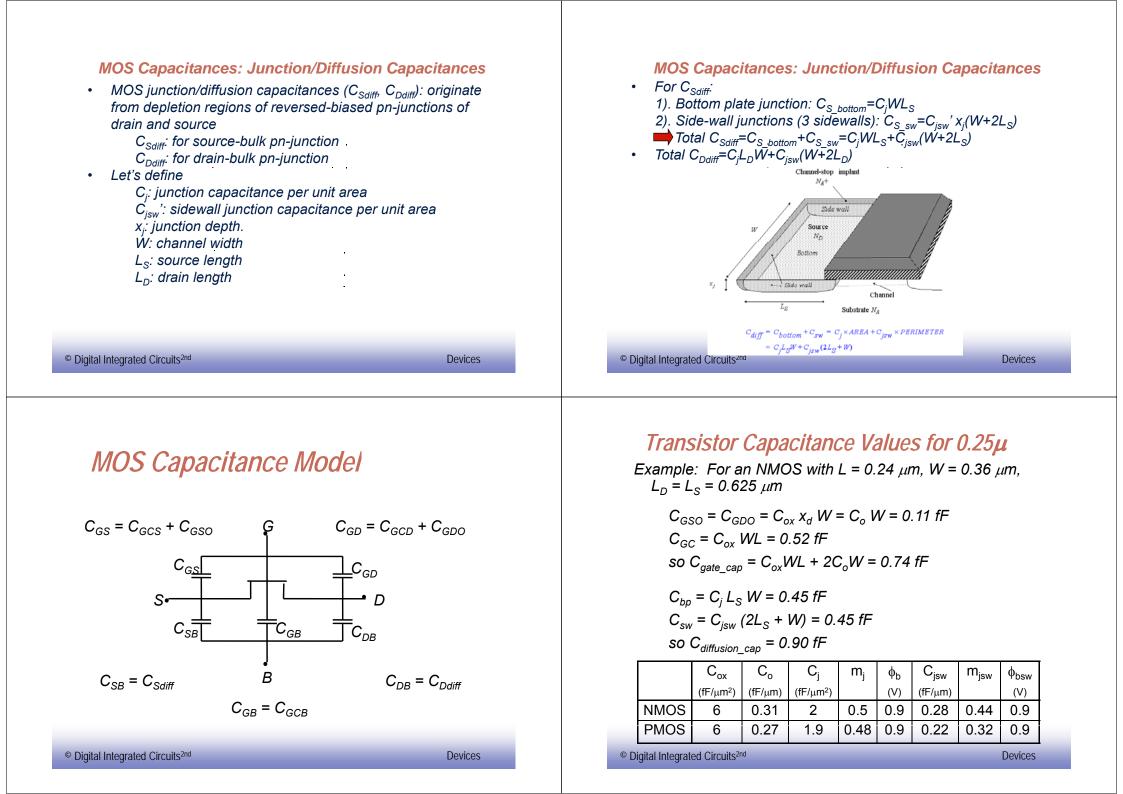
and m is the grading coefficient

- $m = \frac{1}{2}$ for an abrupt junction (transition from n to pmaterial is instantaneous)
- m = 1/3 for a linear (or graded) junction (transition is gradual)
- Nonlinear dependence (that decreases with increasing) © Digital Integrated Circuits^{2nd}

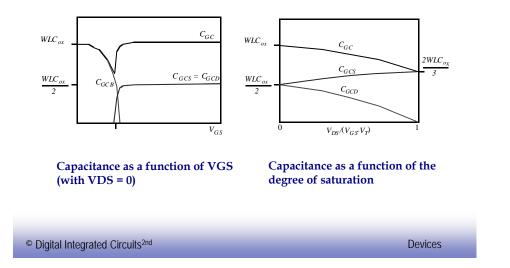
Devices

Reverse-Bias Diode Junction Capacitance

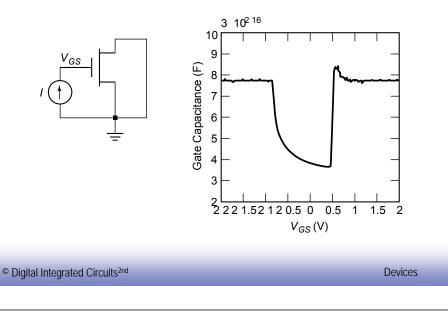



Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest


$$C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{high}) - Q_j(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{j0}$$

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1-m)} [(\phi_0 - V_{high})^{1-m} - (\phi_0 - V_{low})^{1-m}]$$



Gate Capacitance

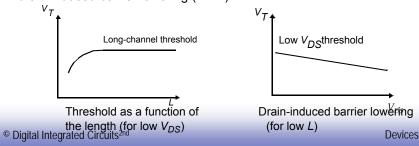
Measuring the Gate Cap

Other (Submicon) MOS Transistor Concerns

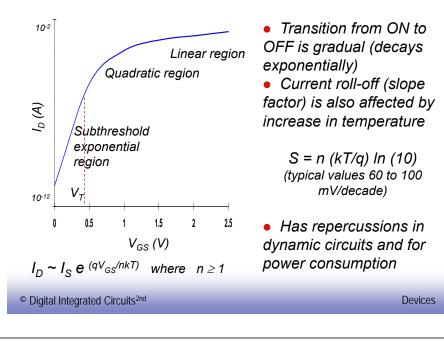
- Velocity saturation
- Subthreshold conduction
 - Transistor is already partially conducting for voltages below $V_{\rm T}$
- Threshold variations
 - In long-channel devices, the threshold is a function of the length (for low V_{DS})
 - In short-channel devices, there is a drain-induced threshold barrier lowering at the upper end of the V_{DS} range (for low L)
- Parasitic resistances

 resistances associated with the source and drain contacts

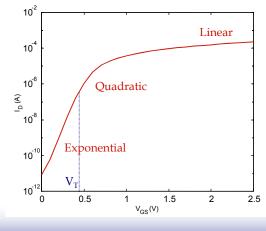
```
    Latch-up
    © Digital Integrated Circuits<sup>2nd</sup>
```

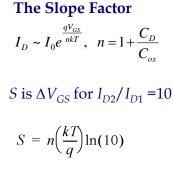

Devices

Threshold Variations


• For short-channel transistors:

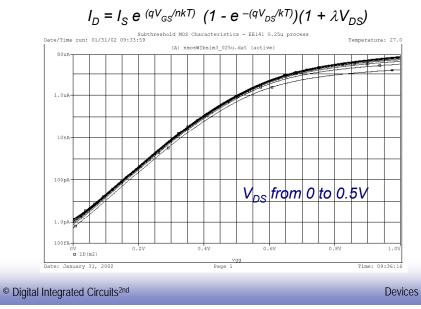
✓ The depletion regions of source and reverse-biased drain junction, previously was ignored in long-channel device. But for short-channel device, they become relatively more important with shrinking channel length. Since a part of the region below gate is already depleted, a smaller VT suffices to cause strong inversion. Thus, VTO decreased with L for short-channel device.


✓ Raising drain-source (bulk) voltage also increases the width of drainjunction depletion region, hence VTO decreases with increasing VDS: drain-induced barrier lowering (DIBL).

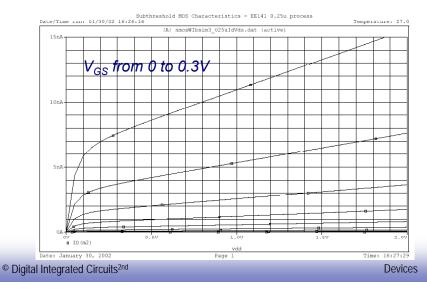


Subthreshold Conductance

Sub-Threshold Conduction



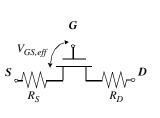
Typical values for S: 60 .. 100 mV/decade

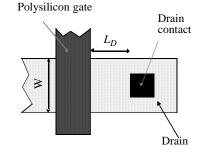

© Digital Integrated Circuits^{2nd}

Devices

Subthreshold I_D vs V_{GS}

Subthreshold I_D vs V_{DS} $I_D = I_S e^{(qV_{GS}'^{nkT})} (1 - e^{-(qV_{DS}'^{kT})})(1 + \lambda V_{DS})$

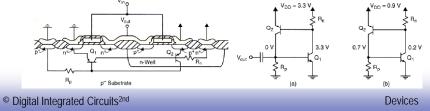

Summary of MOSFET Operating Regions


\Box Strong Inversion $V_{GS} > V_T$

- Linear (Resistive) $V_{DS} < V_{DSAT}$
- Saturated (Constant Current) $V_{DS} \ge V_{DSAT}$
- \Box Weak Inversion (Sub-Threshold) $V_{GS} \leq V_T$
 - Exponential in V_{GS} with linear V_{DS} dependence

Devices

Parasitic Resistances


© Digital	Integrated	Circuits ^{2nd}

Latch-Up

- Latch-up is a very real, very important factor in circuit design that must be accounted for
- Due to (relatively) large current in substrate or n-well
 - create voltage drops across the resistive substrate/well
 - most common during large power/ground current spikes
 - turns on parasitic BJT devices, effectively shorting power & ground
 often results in device failure with fused-open wire bonds or interconnects
 - hot carrier effects can also result in latch-up
 - latch-up very important for short channel devices
- Avoid latch-up by

© Digital Integrated Circuits^{2nd}

- including as many substrate/well contacts as possible
- rule of thumb: one "plug" each time a tx connects to the power rail
 limiting the maximum supply current on the chip
- Infining the maximum supply current on the chip

SPICE MODELS

Level 1: Long Channel Equations - Very Simple

- Level 2: Physical Model Includes Velocity Saturation and Threshold Variations
- Level 3: Semi-Emperical Based on curve fitting to measured devices
- Level 4 (BSIM): Emperical Simple and Popular

MAIN MOS SPICE PARAMETERS

Parameter Name	Symbol	SPICE Name	Units	Default Value
SPICE Model Index		LEVEL	-	1
Zero-Bias Threshold Voltage	VTO	VTO	v	0
Process Transconductance	k'	КР	A/V2	2.E-5
Body-Bias Parameter	g	GAMMA	V0.5	0
Channel Modulation	1	LAMBDA	1/V	0
Oxide Thickness	tox	T OX	m	1.0E-7
Lateral Diffusion	xd	LD	m	0
Metallurgical Junction Depth	xj	ХJ	m	0
Surface Inversion Potential	2 fF	PHI	v	0.6
Substrate Doping	NA,ND	NSUB	cm-3	0
Surface State Density	Qss/q	NSS	cm-3	0
Fast Surface State Density		NF S	cm-3	0
Total Channel Charge Coefficient		NEFF	-	1
Type of Gate Material		TPG	-	1
Surface Mobility	m0	UO	cm2/V-sec	600
Maximum Drift Velocity	umax	VMAX	m/s	0
Mobility Critical Field	xcrit	UCRIT	V/cm	1.0E4
Critical Field Exponent in Mobility Degradation		UEXP	-	0
Transverse Field Exponent (mobility)		UTRA	-	0

© Digital Integrated Circuits^{2nd}

Devices

SPICE Parameters for Parasitics

Parameter Name	Symbol	SPICE Name	Units	Default Value
Source resistance	R _S	RS	Ω	0
Drain resistance	R _D	RD	Ω	0
Sheet resistance (Source/Drain)	R _o	R SH	വ⁄ം	0
Zero Bias Bulk Junction Cap	$C_{j\theta}$	CJ	F/m ²	0
Bulk Junction Grading Coeff.	m	МJ	-	0.5
Zero Bias Side Wall Junction Cap	C _{jsw0}	CJSW	F/m	0
Side Wall Grading Coeff.	m _{sw}	MJSW	-	0.3
Gate-Bulk Overlap Capacitance	CgbO	CGBO	F/m	0
Gate-Source Overlap Capacitance	C _{gsO}	CGSO	F/m	0
Gate-Drain Overlap Capacitance	CgdO	CGDO	F/m	0
Bulk Junction Leakage Current	IS	IS	A	0
Bulk Junction Leakage Current Density	J _S	JS	A/m ²	1E-8
Bulk Junction Potential	¢o	РВ	v	0.8

© Digital Integrated Circuits^{2nd}

Devices

SPICE Transistors Parameters

Parameter Name	Symbol	SPICE Name	Units	Default Value
Drawn Length	L	L	m	-
Effective Width	W	W	m	-
Source Area	AREA	AS	m2	0
Drain Area	AREA	AD	m2	0
Source Perimeter	PERIM	PS	m	0
Drain Perimeter	PERIM	PD	m	0
Squares of Source Diffusion		NRS	-	1
Squares of Drain Diffusion		NRD	-	1